AR
C
HIVE INF
O
RMATI
O
N
ARCHIVE INFORMATION
6
RF Device Data
Freescale Semiconductor
MRF5S9100MR1 MRF5S9100MBR1
TYPICAL CHARACTERISTICS
110100
?70
0
0.1
7th Order
TWO?TONE SPACING (MHz)
Figure 7. Intermodulation Distortion Products
versus Tone Spacing
INTERMODULATION DISTORTION (dBc)
IMD,
VDD
= 26 Vdc, P
out
= 96 W (PEP), I
DQ
= 950 mA
Two?Tone Measurements, Center Frequency = 880 MHz
5th Order
3rd Order
?10
?20
?30
?40
?50
?60
38
48
58
28
Pin, INPUT POWER (dBm)
Figure 8. Pulse CW Output Power versus
Input Power
57
56
55
54
53
52
51
50
49
29 30 31 32 33 34 35 36 37
, DRAIN EFFICIENCY (%)
η
D
10 ?70
5?75
ηD
100
0
50
1
?80
?30
20 ?60Gps
30 ?50ACPR
ALT1
Pout, OUTPUT POWER (WATTS) AVG.
Figure 9. Single-Carrier N-CDMA ACPR, Power
Gain, Efficiency and ALT1 versus Output Power
45 ?35VDD
= 26 Vdc, I
DQ
= 950 mA, f = 880 MHz
N?CDMA IS?95 (Pilot, Sync, Paging,
40 ?40
Traffic Codes 8 through 13)
G
ps
, POWER GAIN (dB)
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ALT1, CHANNEL POWER (dBm)
35 ?45
25 ?55
15 ?65
10
Ideal
P3dB = 51.58 dBm (143 W)
VDD
= 26 Vdc, I
DQ
= 950 mA
Pulsed CW, 8 μsec(on), 1 msec(off)
Center Frequency = 880 MHz
Actual
P1dB = 50.71 dBm (117 W)
180
17
20
0
VDD
= 12 V
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain versus Output Power
G
ps
, POWER GAIN (dB)
IDQ
= 950 mA
f = 880 MHz
16 V
20 V
24 V
32 V
19.5
19
18.5
18
17.5
30 60 90 120 150
220
1010
80
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2
for MTTF in a particular application.
100 120 140 160 180
109
107
108
Figure 11. MTTF Factor versus Junction Temperature
MTTF FACTOR (HOURS x AMPS
2
)
200
P
out
, OUTPUT POWER (dBm)